Inaugural Report on Autologous Islet Transplantation

Prepared by:
CITR Coordinating Center
The Emmes Corporation
Rockville, MD

Sponsored by:
National Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health
US Department of Health and Human Services
Bethesda, MD

January 6, 2017
Collaborative Islet Transplant Registry 2016

Islet Autografts

Yellow: insulin independent; Green: insulin-using with graft function;
Black: no islet function (C-peptide<0.3 ng/ml); Gray: missing data; Red: re-infusions.
Pie charts show percent of all follow-up time.
23 August 2018

MEMORANDUM

TO: CITR Collaborators, Islet Transplant Centers, Diabetes Research Community, and Interested Public

FROM: Thomas Eggerman, MD, PhD
Guillermo Arreaza-Rubin, MD
Program Directors, Division of Diabetes, Endocrinology and Metabolic Diseases
National Institute of Diabetes and Digestive and Kidney Diseases

Melena Bellin, MD
CITR Autograft Working Group Chair and
CITR Executive Committee

SUBJECT: CITR Inaugural Report on Autologous Islet Transplantation

Funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) with supplemental funding from the Juvenile Diabetes Research Foundation (JDRF) for 2006-2015, the Collaborative Islet Transplant Registry (CITR) serves the mission to expedite progress and promote safety in islet/beta cell transplantation through the collection, analysis, and communication of comprehensive and current data on human-to-human islet/beta cell transplants performed in North America, and Juvenile Diabetes Research Institute-sponsored European and Australian sites.

We are pleased to present the CITR Inaugural Report on Autologous Islet Transplantation (infusions as of Sep 2015, follow-up as of Jan 2017) including data from the majority of the auto-islet transplant programs active in 1999-2016.

The report has been prepared by staff of The Emmes Corporation under the leadership of the CITR Publications and Presentations Committee chaired by Dr. Michael Rickels, and CITR Coordinating Center Principal Investigator, Ms. Franca Benedicty Barton.

We thank everyone who has contributed data and collaborated in the development of the CITR Registry and the production of this Report, including the islet transplant programs and especially the islet recipients who voluntarily consent to the submission of their information. We look forward to their continued participation, along with that of all centers and organizations active in islet transplantation.
NOTICE:

The CITR Inaugural Report on Autologous Islet Transplantation details data received as of January 6, 2017 for all auto-islet transplant recipients transplanted by September 15, 2016.

Detailed Methods and Definitions can be found in the CITR 10th Annual Report at www.citregistry.org
Chapter 1
Autologous Islet Transplant Activity
Table of Contents

Introduction ... 2
Exhibit 1-1A Auto-Islet Recipients.. 3
Exhibit 1-1B Auto-Islet Infusions... 3
Exhibit 1-2 Cumulative Auto-Islet Recipient Enrollment (by date of transplant) 3
Exhibit 1-3 Clinical sites performing islet autograft transplantation, by year – North America.. 4
Exhibit 1-4A New islet autograft transplant enrollment, by year of first transplant – North America .. 5
Exhibit 1-4B New islet autograft transplant enrollment, by year of first transplant – Europe and Australia.. 6
Exhibit 1-5 First and second autograft transplants, by year of transplant 7
Exhibit 1-6 Adult and pediatric autograft transplants, by year of transplant 8
Introduction

This report is based on autologous islet transplant (Auto-Itx) recipients registered in the Collaborative Islet Transplant Registry (CITR), infused from 1999 through September 2015, with follow-up data through December 2016.

Of 23 North American sites performing Auto-ITx during this period, 11 reported data to CITR, along with 4 European and Australian islet transplant centers. These sites registered 819 auto-islet transplant recipients. Of these, 754 recipients were in North America, 63 in Europe, and 2 in Australia. Ninety-six (96) were aged less than 18, and 723 were 18 or older at the time of their transplant. Eight (8) of the total recipients received a second auto-islet transplant. Exhibits 1-1A and 1-1B summarize the total allograft recipients and infusions included in this report. The increase in islet autotransplant over time is likely reflective of increasing awareness and acceptance of total pancreatectomy with Auto-Itx as a therapy for refractory pancreatitis.

Exhibit 1-2 shows the cumulative enrollment by date of transplant of all the Auto-ITx in CITR, by less than 18 years old and 18 and up. Exhibit 1-3 shows the number of clinical sites by year performing Auto-ITx. As with Allo-Itx, after the initial rise in annual transplants performed from 1999 through 2007, with subsequent leveling off thereafter. The light gray bars show the sites already members of CITR or identified via an online survey conducted by CITR, while the dark gray bars show the transplants registered in CITR. A few additional cases of Auto-Itx may be performed at sites not affiliated with an islet processing center, but those would be few.

Exhibit 1-4A shows the number of new Auto-Itx recipients by year from 1999. Exhibit 1-4B shows the number of new Auto-Itx annually reported to CITR by the European and Australian sites. Total pancreatectomy with Auto-Itx has not been endorsed as a procedure for chronic pancreatitis as largely abroad as in the US, with certain exceptions by country. The United Kingdom specifically has utilized Auto-Itx but has been more limited in scope in recent years due to limited funding for the procedure from the National Health System.

Exhibit 1-5 shows the second infusion by year. These are very few, performed only in cases where a partial pancreatectomy with Auto-Itx is first performed, and then due to treatment failure (persistent pancreatic disease), a completion pancreatectomy with Auto-Itx is then performed.

Exhibit 1-6 breaks down the new recipients by year adult vs. pediatric. Auto-Itx has been increasingly utilized in the care of children with chronic pancreatitis over the past decade, although the majority of cases are still performed in adult recipients.
Exhibit 1-1A
Auto-Islet Recipients

<table>
<thead>
<tr>
<th>CITR-Consented AUTO Recipients</th>
<th>North America</th>
<th>Europe</th>
<th>Australia</th>
<th>Total Recipients</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>754</td>
<td>63</td>
<td>2</td>
<td>819</td>
</tr>
</tbody>
</table>

Exhibit 1-1B
Auto-Islet Infusions

<table>
<thead>
<tr>
<th>AUTO Infusions</th>
<th>Pediatric</th>
<th>Adult</th>
<th>Total Infusions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>North America</td>
<td>Europe/ Australia</td>
<td>North America</td>
</tr>
<tr>
<td>N</td>
<td>96</td>
<td>2</td>
<td>665</td>
</tr>
</tbody>
</table>

Exhibit 1-2
Cumulative Auto-Islet Recipient Enrollment (by date of transplant)
Exhibit 1-3
Clinical sites performing islet autograft transplantation, by year – North America

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Centers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>2</td>
</tr>
<tr>
<td>2007</td>
<td>3</td>
</tr>
<tr>
<td>2008</td>
<td>4</td>
</tr>
<tr>
<td>2009</td>
<td>1</td>
</tr>
<tr>
<td>2010</td>
<td>7</td>
</tr>
<tr>
<td>2011</td>
<td>8</td>
</tr>
<tr>
<td>2012</td>
<td>8</td>
</tr>
<tr>
<td>2013</td>
<td>7</td>
</tr>
<tr>
<td>2014</td>
<td>7</td>
</tr>
<tr>
<td>2015</td>
<td>6</td>
</tr>
</tbody>
</table>

Legend:
- All North American centers ever performing islet autografts 1999-2015 (N=23)
- CITR-participating centers with data reported (N=11)

CITR Data 06 Jan 2017
Exhibit 1-4A
New islet autograft transplant enrollment, by year of first transplant – North America

<table>
<thead>
<tr>
<th>Year</th>
<th>All autograft recipients</th>
<th>Registered in CITR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

CITR Data 06 Jan 2017

Note: The data represents new islet autograft transplant enrollment in North America, with a focus on the number of recipients by year of first transplant.
Exhibit 1-4B
New islet autograft transplant enrollment, by year of first transplant – Europe and Australia

<table>
<thead>
<tr>
<th>Year</th>
<th>Autograft Recipients</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2</td>
</tr>
<tr>
<td>2002</td>
<td>2</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>5</td>
</tr>
<tr>
<td>2008</td>
<td>1</td>
</tr>
<tr>
<td>2009</td>
<td>7</td>
</tr>
<tr>
<td>2010</td>
<td>10</td>
</tr>
<tr>
<td>2011</td>
<td>12</td>
</tr>
<tr>
<td>2012</td>
<td>4</td>
</tr>
<tr>
<td>2013</td>
<td>6</td>
</tr>
<tr>
<td>2014</td>
<td>8</td>
</tr>
<tr>
<td>2015</td>
<td>6</td>
</tr>
</tbody>
</table>

Autograft recipients registered in CITR (N= 65)
CITR Data 06Jan2017
Exhibit 1-5
First and second autograft transplants, by year of transplant

Year

Infusion Sequence
1 2

CITR Data 06Jan2017
Exhibit 1-6
Adult and pediatric autograft transplants, by year of transplant
Chapter 2
Autologous Islet Recipient Characteristics
Table of Contents

Introduction .. 2
Exhibit 2-1 Recipient Demographics ... 3
Exhibit 2-2 Recipient Characteristics at First Infusion ... 7
Exhibit 2-2B Recipient Insulin Use at First Infusion .. 11
Exhibit 2-3 Recipient Characteristics and Medical History ... 12
Exhibit 2-4 Recipient Pancreatectomy Information ... 33
Exhibit 2-5 Recipient Laboratory Values at First Infusion .. 49
Introduction

This chapter details the available demographic and medical history information on islet autograft recipients registered in CITR.

Many of the data elements in the islet autograft segment of the CITR registry data are not available particularly from the earlier eras (1999-2010). What results are available are presented in this Chapter. Data missing is shown for each exhibit. More than 50% of the data is missing except for gender, age and era. Less than 25% missing data is highlighted in green text. Data missing at 25-50% levels are highlighted in yellow.

The gender distribution shows a substantial majority of females receiving auto-islet transplantation across all age groups, and across all eras (Exhibit 2-1).

The vast majority of recipients identify as Caucasian or white (Exhibit 2-1) across all age groups and eras.

Mean blood glucose was well in control, although it rose with increasing age (Exhibit 2-2). Basal C-peptide was also well above 0.3 ng/mL, with higher levels with increasing age. This would be expected since Auto-Itx is only performed in recipients with functioning beta cells to isolate and infuse. HbA1c, though statistically significantly different across the age groups, ranged within normal levels. As a mixture of indications for pancreatectomy and auto-islet transplantation, the CITR Auto-Itx group shows varying levels of insulin requirement prior to infusion: none of the children <12 years old (yo) required any insulin, 4% of the 12-18 yo’s had required insulin, 2% of the the 18-<35 yo’s required insulin, and 5% ≥35 yo’s required insulin (Exhibit 2-2).

Differences in FBG, basal C-peptide and HbA1c over the eras of the Registry may reflect recent acceptance of performing Auto-Itx in diabetic patients with chronic pancreatitis when C-peptide levels are high. In early eras, diabetic patients were largely not considered candidates for Auto-Itx and total pancreatectomy alone was instead performed.

Both diagnostic and treatment ERCP as well as stent placement and nerve blockage increased with increasing age, while drainage and enzyme replacement were equally prevalent across age groups. Prior surgery was performed much less frequently among those <18 yo’s, while Puestow was more prevalent among the <18 yo’s. (Exhibit 2-3)

Total or completion pancreatectomy was done in 97% of the <35 yo’s, and 87% of the ≥35 yo’s. Across the eras, total pancreatectomy increased notably over the recent eras, likely reflecting only the varying age distribution in the recent eras. (Exhibit 2-4)

Pancreatitis as the reason for the pancreatectomy declined from 100% in young children to 84% in ≥35 yo’s (also reflected across the eras), while very few were done for treating cancer (Exhibit 2-4).

Pancreatitis duration did not differ remarkably across the age groups or by era (Exhibit 2-4). Familial pancreatitis was highly prevalent among the <18 yo’s, sharply declining with increasing age. Conversely, idiopathic etiology rose notably with increasing age, as did pancreas divisum and sphincter of Oddi dysfunction. The differences in pancreatitis etiology across the eras are not clearly interpretable.

Any nominal differences in the laboratory values by age or era are based on too small a sample for any meaningful interpretation (Exhibit 2-5).
Exhibit 2-1
Recipient Demographics

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age Group</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td><12 yrs</td>
<td>22</td>
<td>64.7</td>
<td>33</td>
<td>53.2</td>
<td>153</td>
<td>70.8</td>
<td>352</td>
<td>69.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-18 yrs</td>
<td>33</td>
<td></td>
<td>29</td>
<td>46.8</td>
<td>63</td>
<td>29.2</td>
<td>155</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>=35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td><12 yrs</td>
<td>12</td>
<td>35.3</td>
<td>29</td>
<td>46.8</td>
<td>63</td>
<td>29.2</td>
<td>155</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-18 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>=35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Data Completeness</th>
<th>Age Group</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>Available</td>
<td><12 yrs</td>
<td>34</td>
<td>100.0</td>
<td>62</td>
<td>100.0</td>
<td>216</td>
<td>100.0</td>
<td>507</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-18 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>=35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Available</td>
<td><12 yrs</td>
<td>35</td>
<td>100.0</td>
<td>62</td>
<td>100.0</td>
<td>216</td>
<td>100.0</td>
<td>507</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-18 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>=35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Era</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1999-2002</td>
<td>21</td>
<td>58.3</td>
<td>60</td>
<td>70.6</td>
<td>206</td>
<td>74.6</td>
<td>241</td>
<td>64.4</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2003-2006</td>
<td>25</td>
<td>61.7</td>
<td>29</td>
<td>32.1</td>
<td>90</td>
<td>28.2</td>
<td>133</td>
<td>36.6</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2007-2010</td>
<td>28</td>
<td>70.6</td>
<td>30</td>
<td>70.6</td>
<td>102</td>
<td>71.7</td>
<td>151</td>
<td>73.6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2011-2014</td>
<td>33</td>
<td>82.8</td>
<td>37</td>
<td>81.3</td>
<td>126</td>
<td>71.6</td>
<td>173</td>
<td>80.3</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2015-2018</td>
<td>35</td>
<td>83.3</td>
<td>37</td>
<td>81.3</td>
<td>126</td>
<td>71.6</td>
<td>173</td>
<td>80.3</td>
<td>24</td>
</tr>
<tr>
<td>Male</td>
<td>1999-2002</td>
<td>15</td>
<td>41.7</td>
<td>25</td>
<td>29.4</td>
<td>70</td>
<td>25.4</td>
<td>133</td>
<td>35.6</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2003-2006</td>
<td>20</td>
<td>52.4</td>
<td>24</td>
<td>48.0</td>
<td>72</td>
<td>28.0</td>
<td>133</td>
<td>35.6</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2007-2010</td>
<td>25</td>
<td>62.5</td>
<td>30</td>
<td>60.0</td>
<td>97</td>
<td>50.0</td>
<td>151</td>
<td>66.7</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2011-2014</td>
<td>30</td>
<td>70.3</td>
<td>36</td>
<td>71.4</td>
<td>126</td>
<td>71.6</td>
<td>173</td>
<td>80.3</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2015-2018</td>
<td>32</td>
<td>79.4</td>
<td>35</td>
<td>79.4</td>
<td>126</td>
<td>71.6</td>
<td>173</td>
<td>80.3</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Data Completeness</th>
<th>Era</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>Available</td>
<td>1999-2002</td>
<td>36</td>
<td>100.0</td>
<td>85</td>
<td>100.0</td>
<td>276</td>
<td>100.0</td>
<td>374</td>
<td>100.0</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2003-2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007-2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011-2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2015-2018</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Available</td>
<td>1999-2002</td>
<td>32</td>
<td>100.0</td>
<td>65</td>
<td>100.0</td>
<td>276</td>
<td>100.0</td>
<td>374</td>
<td>100.0</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2003-2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007-2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011-2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2015-2018</td>
<td></td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-1 (continued)
Recipient Demographics

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs N</th>
<th><12 yrs %</th>
<th>12-<18 yrs N</th>
<th>12-<18 yrs %</th>
<th>18-<35 yrs N</th>
<th>18-<35 yrs %</th>
<th>>=35 yrs N</th>
<th>>=35 yrs %</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.0</td>
<td>0.0</td>
<td>3</td>
<td>3.3</td>
<td>17</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple</td>
<td>1</td>
<td>25.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>1</td>
<td>11.1</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>3</td>
<td>75.0</td>
<td>8</td>
<td>88.9</td>
<td>87</td>
<td>95.6</td>
<td>251</td>
<td>91.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Completeness</th>
<th><12 yrs N</th>
<th><12 yrs %</th>
<th>12-<18 yrs N</th>
<th>12-<18 yrs %</th>
<th>18-<35 yrs N</th>
<th>18-<35 yrs %</th>
<th>>=35 yrs N</th>
<th>>=35 yrs %</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race Available</td>
<td>4</td>
<td>11.8</td>
<td>9</td>
<td>14.5</td>
<td>91</td>
<td>42.1</td>
<td>273</td>
<td>53.8</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
<td>88.2</td>
<td>53</td>
<td>85.5</td>
<td>125</td>
<td>57.9</td>
<td>234</td>
<td>46.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Race American Indian</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>1.2</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1</td>
<td>2.9</td>
<td>0.0</td>
<td>1</td>
<td>1.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.0</td>
<td>2</td>
<td>4.3</td>
<td>8</td>
<td>8.0</td>
<td>9</td>
<td>5.3</td>
<td>1</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>0.6</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>1.0</td>
<td>1</td>
<td>0.6</td>
<td>1</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>33</td>
<td>97.1</td>
<td>44</td>
<td>95.7</td>
<td>90</td>
<td>90.0</td>
<td>158</td>
<td>92.4</td>
<td>24</td>
<td>92.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Race Available</td>
<td>34</td>
<td>94.4</td>
<td>46</td>
<td>54.1</td>
<td>100</td>
<td>36.2</td>
<td>171</td>
<td>45.7</td>
<td>26</td>
<td>54.2</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>5.6</td>
<td>39</td>
<td>45.9</td>
<td>176</td>
<td>63.8</td>
<td>203</td>
<td>54.3</td>
<td>22</td>
<td>45.8</td>
</tr>
</tbody>
</table>

* = p < .05; ** = p < .01; *** = p < .001
Exhibit 2-1 (continued)
Recipient Demographics

<table>
<thead>
<tr>
<th>Race</th>
<th>Age Groups</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><12 yrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-18 yrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18-35 yrs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>=35 yrs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Race</th>
<th>Year Groups</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1999-2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2003-2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007-2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011-2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2015-2018</td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 2-1 (continued)

Recipient Demographics

Age Group

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Hispanic</td>
<td>0.0</td>
<td>0.0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Not Hispanic</td>
<td>4</td>
<td>100.0</td>
<td>7</td>
</tr>
</tbody>
</table>

Data Completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Hispanic</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Not Hispanic</td>
<td>24</td>
<td>100.0</td>
<td>42</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Available</td>
<td>24</td>
<td>66.7</td>
<td>42</td>
<td>49.4</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>12</td>
<td>33.3</td>
<td>43</td>
<td>50.6</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001

Ethnicity

Chart: Data completeness by gender and age group

- **<12 yrs**
- **12-18 yrs**
- **18-35 yrs**
- **>=35 yrs**

Chart: Data completeness by gender and era

- **1999-2002**
- **2003-2006**
- **2007-2010**
- **2011-2014**
- **2015-2018**

CTR Data 06Jan2017
Exhibit 2-2
Recipient Characteristics at First Infusion

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12<18 yrs</th>
<th>18<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Mean SE</td>
<td>N Mean SE</td>
<td>N Mean SE</td>
<td>N Mean SE</td>
</tr>
<tr>
<td>Age at transplant</td>
<td>34 8.8 0.4</td>
<td>62 15.4 0.2</td>
<td>216 27.7 0.3</td>
<td>507 48.3 0.4</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>3 39.1 5.2</td>
<td>5 50.2 7.7</td>
<td>67 73.9 2.3</td>
<td>212 71.6 1.1</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>2 19.3 0.7</td>
<td>3 22.5 2.2</td>
<td>66 26.1 0.8</td>
<td>195 25.4 0.4</td>
</tr>
<tr>
<td>Daily insulin requirement prior to infusion (units)</td>
<td>32 0.0 0.0</td>
<td>62 0.7 0.6</td>
<td>177 0.5 0.3</td>
<td>391 1.3 0.4</td>
</tr>
<tr>
<td>Avg daily insulin / kg recipient body weight</td>
<td>3 0.0 0.0</td>
<td>5 0.0 0.0</td>
<td>49 0.0 0.0</td>
<td>156 0.0 0.0</td>
</tr>
<tr>
<td>Fasting plasma glucose (mg/dL)</td>
<td>25 86.5 1.7</td>
<td>34 87.4 1.6</td>
<td>102 93.9 2.2</td>
<td>235 98.3 1.5</td>
</tr>
<tr>
<td>Basal C-Peptide (ng/mL)</td>
<td>29 1.4 0.2</td>
<td>167 2.3 0.1</td>
<td>195 2.5 0.4</td>
<td></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>31 5.2 0.1</td>
<td>164 5.2 0.0</td>
<td>370 5.6 0.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at transplant</td>
<td>36 39.9 2.0</td>
<td>85 38.5 1.3</td>
<td>276 40.2 0.8</td>
<td>374 37.7 0.9</td>
<td>48 37.6 2.1</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>4 61.9 8.7</td>
<td>11 67.4 3.6</td>
<td>82 66.9 1.7</td>
<td>168 72.4 1.3</td>
<td>22 84.8 5.5</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>4 21.6 1.9</td>
<td>9 25.1 1.8</td>
<td>71 24.1 0.7</td>
<td>161 25.5 0.4</td>
<td>21 30.8 1.5</td>
</tr>
<tr>
<td>Daily insulin requirement prior to infusion (units)</td>
<td>10 0.0 0.0</td>
<td>65 0.2 0.2</td>
<td>217 1.3 0.5</td>
<td>343 0.9 0.4</td>
<td>21 1.5 1.5</td>
</tr>
<tr>
<td>Avg daily insulin / kg recipient body weight</td>
<td>4 0.0 0.0</td>
<td>2 0.0 0.0</td>
<td>41 0.0 0.0</td>
<td>146 0.0 0.0</td>
<td>20 0.0 0.0</td>
</tr>
<tr>
<td>Fasting plasma glucose (mg/dL)</td>
<td>0 -</td>
<td>13 92.7 1.8</td>
<td>52 96.1 3.0</td>
<td>314 94.7 1.3</td>
<td>17 109.9 3.9</td>
</tr>
<tr>
<td>Basal C-Peptide (ng/mL)</td>
<td>4 1.4 0.3</td>
<td>17 2.6 0.4</td>
<td>231 2.2 0.1</td>
<td>350 2.0 0.1</td>
<td>20 2.9 0.4</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>1 5.0</td>
<td>26 5.3 0.1</td>
<td>226 5.4 0.0</td>
<td>340 5.5 0.0</td>
<td>21 5.8 0.2</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-2 (continued)
Recipient Characteristics at First Infusion

- **Age at transplant**
 - **Age Group**
 - <12 yrs
 - 12-<18 yrs
 - 18-<35 yrs
 - >=35 yrs
 - **Era**
 - 1999-2002
 - 2003-2006
 - 2007-2010
 - 2011-2014
 - 2015-2018

- **Weight (kg)**
 - **Age Group**
 - <12 yrs
 - 12-<18 yrs
 - 18-<35 yrs
 - >=35 yrs
 - **Era**
 - 1999-2002
 - 2003-2006
 - 2007-2010
 - 2011-2014
 - 2015-2018

- **BMI (kg/m²)**
 - **Age Group**
 - <12 yrs
 - 12-<18 yrs
 - 18-<35 yrs
 - >=35 yrs
 - **Era**
 - 1999-2002
 - 2003-2006
 - 2007-2010
 - 2011-2014
 - 2015-2018

CITR Data 06Jan2017

Chapter 2

Page 2-8
Exhibit 2-2 (continued)
Recipient Characteristics at First Infusion

Pre-tx insulin (units)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><12 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-<18 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-<35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>=35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avg daily ins/kg

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><12 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-<18 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-<35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>=35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fast gluc(mg/dL)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><12 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-<18 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-<35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>=35 yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 2-2 (continued)
Recipient Characteristics at First Infusion

- Basal C-Peptide (ng/mL)
- Era

- HbA1c (%)
- Age Group

CITR Data 06Jan2017
Exhibit 2-2B
Recipient Insulin Use at First Infusion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Daily Insulin Use (Units)</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Not on insulin</td>
<td>10</td>
<td>100.0</td>
<td>64</td>
<td>98.5</td>
<td>207</td>
</tr>
<tr>
<td>On insulin</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1.5</td>
<td>10</td>
</tr>
</tbody>
</table>

Available data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Daily Insulin Use (Units)</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Not on insulin</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td>On insulin</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1.2</td>
<td>10</td>
</tr>
</tbody>
</table>
Exhibit 2-3
Recipient Characteristics and Medical History

Hypoglycemia status

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12<18 yrs</th>
<th>18<35 yrs</th>
<th>>=35 yrs</th>
<th>N %</th>
<th>N %</th>
<th>N %</th>
<th>N %</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aware</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Occurrence</td>
<td>13</td>
<td>100.0</td>
<td>20</td>
<td>100.0</td>
<td>82</td>
<td>97.6</td>
<td>229</td>
<td>96.2</td>
<td></td>
</tr>
<tr>
<td>Unaware</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>4</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12<18 yrs</th>
<th>18<35 yrs</th>
<th>>=35 yrs</th>
<th>N %</th>
<th>N %</th>
<th>N %</th>
<th>N %</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>13</td>
<td>38.2</td>
<td>20</td>
<td>32.3</td>
<td>84</td>
<td>38.9</td>
<td>238</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>21</td>
<td>61.8</td>
<td>42</td>
<td>67.7</td>
<td>132</td>
<td>61.1</td>
<td>269</td>
<td>53.1</td>
<td></td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aware</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>No Occurrence</td>
<td>4</td>
<td>111.1</td>
<td>12</td>
<td>100.0</td>
<td>79</td>
<td>97.5</td>
<td>228</td>
<td>96.2</td>
<td>21</td>
<td>100.0 ***</td>
</tr>
<tr>
<td>Unaware</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6</td>
<td>2.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>4</td>
<td>11.1</td>
<td>12</td>
<td>14.1</td>
<td>81</td>
<td>29.3</td>
<td>237</td>
<td>63.4</td>
<td>21</td>
<td>43.8</td>
</tr>
<tr>
<td>Missing</td>
<td>32</td>
<td>88.9</td>
<td>73</td>
<td>85.9</td>
<td>195</td>
<td>70.7</td>
<td>137</td>
<td>36.6</td>
<td>27</td>
<td>56.3</td>
</tr>
</tbody>
</table>

Severe Hypoglycemic Events

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12<18 yrs</th>
<th>18<35 yrs</th>
<th>>=35 yrs</th>
<th>N %</th>
<th>N %</th>
<th>N %</th>
<th>N %</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHE</td>
<td>32</td>
<td>100.0</td>
<td>56</td>
<td>100.0</td>
<td>198</td>
<td>100.0</td>
<td>453</td>
<td>99.6</td>
<td></td>
</tr>
<tr>
<td>SHE</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Severe Hypoglycemic Events

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12<18 yrs</th>
<th>18<35 yrs</th>
<th>>=35 yrs</th>
<th>N %</th>
<th>N %</th>
<th>N %</th>
<th>N %</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
<td>2</td>
<td>5.9</td>
<td>6</td>
<td>9.7</td>
<td>18</td>
<td>8.3</td>
<td>52</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Available</td>
<td>32</td>
<td>94.1</td>
<td>56</td>
<td>90.3</td>
<td>198</td>
<td>91.7</td>
<td>455</td>
<td>89.7</td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th></th>
<th>Era</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Severe Hypoglycemic Events</td>
<td>ASHE</td>
<td>34</td>
<td>100.0</td>
<td>82</td>
<td>100.0</td>
<td>258</td>
<td>99.6</td>
<td>344</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>SHE</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th>Era</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Severe Hypoglycemic Events</td>
<td>Missing</td>
<td>2</td>
<td>5.6</td>
<td>3</td>
<td>3.5</td>
<td>17</td>
<td>6.2</td>
<td>29</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>34</td>
<td>94.4</td>
<td>82</td>
<td>96.5</td>
<td>259</td>
<td>93.8</td>
<td>345</td>
<td>92.2</td>
</tr>
</tbody>
</table>

Lipid-lowering medication	Era										
	N	%	N	%	N	%	N	%	N	%	p
Lipid-lowering medication	No	4	100.0	1	50.0	34	79.1	129	86.6	20	95.2
	Yes	0.0	0.0	1	50.0	9	20.9	20	13.4	1	4.8

Lipid-lowering medication	Era										
Lipid-lowering medication	Missing	32	88.9	83	97.6	233	84.4	225	60.2	27	56.3
	Available	4	11.1	2	2.4	43	15.6	149	39.8	21	43.8

*=p<.05; **=p<.01; ***=p<.001

Lipid-lowering medication

<12 yrs | **12<18 yrs** | **18<35 yrs** | **>=35 yrs**

CITR Data 06Jan2017
Exhibit 2-3 (continued)

Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Anti-hypertension medication</td>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Anti-hypertension medication</td>
<td>Missing</td>
<td>31</td>
<td>91.2</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>3</td>
<td>8.8</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Anti-hypertension medication</td>
<td>No</td>
<td>4</td>
<td>100.0</td>
<td>1</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>1</td>
<td>50.0</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Anti-hypertension medication</td>
<td>Missing</td>
<td>32</td>
<td>88.9</td>
<td>83</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>4</td>
<td>11.1</td>
<td>2</td>
<td>2.4</td>
</tr>
</tbody>
</table>

*p<.05; **p<.01; ***p<.001
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Anti-hyperglycemia medication</td>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>5</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Anti-hyperglycemia medication</td>
<td>No</td>
<td>31</td>
<td>91.2</td>
<td>57</td>
<td>91.9</td>
</tr>
<tr>
<td>Available</td>
<td>3</td>
<td>8.8</td>
<td>5</td>
<td>8.1</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>p</td>
</tr>
<tr>
<td>Anti-hyperglycemia medication</td>
<td>No</td>
<td>4</td>
<td>100.0</td>
<td>2</td>
<td>100.0</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>4.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>p</td>
</tr>
<tr>
<td>Anti-hyperglycemia medication</td>
<td>No</td>
<td>32</td>
<td>88.9</td>
<td>83</td>
<td>97.6</td>
<td>232</td>
</tr>
<tr>
<td>Available</td>
<td>4</td>
<td>11.1</td>
<td>2</td>
<td>2.4</td>
<td>44</td>
<td>15.9</td>
</tr>
</tbody>
</table>

*p<.05; **p<.01; ***p<.001

"CITR 1st Annual Autograft Report"
Exhibit 2-3 (continued)

Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Smoker No</td>
<td>3</td>
<td>100.0</td>
<td>5</td>
<td>100.0</td>
<td>52</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>10</td>
<td>16.1</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker Missing</td>
<td>31</td>
<td>91.2</td>
<td>57</td>
<td>91.9</td>
<td>154</td>
<td>71.3</td>
</tr>
<tr>
<td>Available</td>
<td>3</td>
<td>8.8</td>
<td>5</td>
<td>8.1</td>
<td>62</td>
<td>28.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Smoker No</td>
<td>1</td>
<td>50.0</td>
<td>9</td>
<td>75.0</td>
<td>56</td>
<td>65.1</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>50.0</td>
<td>3</td>
<td>25.0</td>
<td>30</td>
<td>34.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker Missing</td>
<td>34</td>
<td>94.4</td>
<td>73</td>
<td>85.9</td>
<td>190</td>
<td>68.8</td>
<td>220</td>
</tr>
<tr>
<td>Available</td>
<td>2</td>
<td>5.6</td>
<td>12</td>
<td>14.1</td>
<td>86</td>
<td>31.2</td>
<td>154</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-3 (continued)

Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>CAD history</td>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>CVA history</td>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>CVA history</td>
<td>Missing</td>
<td>31</td>
<td>91.2</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>3</td>
<td>8.8</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>CVA history</td>
<td>No</td>
<td>4</td>
<td>100.0</td>
<td>11</td>
<td>91.7</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>8.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>CVA history</td>
<td>Missing</td>
<td>32</td>
<td>88.9</td>
<td>73</td>
<td>85.9</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>4</td>
<td>11.1</td>
<td>12</td>
<td>14.1</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Prior medical procedure - Diagnostic ERCP</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0.0</td>
<td>1.0</td>
<td>16.0</td>
<td>91.0</td>
<td>33.6</td>
</tr>
<tr>
<td>Yes</td>
<td>4.0</td>
<td>100.0</td>
<td>94.1</td>
<td>89.0</td>
<td>180.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
<td>30.0</td>
<td>88.2</td>
<td>45.0</td>
<td>72.6</td>
<td>111.0</td>
</tr>
<tr>
<td>Available</td>
<td>4.0</td>
<td>11.8</td>
<td>17.0</td>
<td>27.4</td>
<td>105.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior medical procedure - Diagnostic ERCP</td>
<td>No</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>50.0</td>
<td>50.0</td>
<td>46.0</td>
<td>46.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

 *=p<.05; **=p<.01; ***=p<.001
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Prior medical procedure- Treatment ERCP</th>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>2</td>
<td>100.0</td>
<td>2</td>
<td>50.0</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>2</td>
<td>100.0</td>
<td>2</td>
<td>50.0</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior medical procedure- Treatment ERCP</td>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>6</td>
<td>85.7</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>1</td>
<td>14.3</td>
<td>41</td>
<td>50.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior medical procedure- Treatment ERCP</td>
<td>No</td>
<td>33</td>
<td>91.7</td>
<td>78</td>
<td>91.8</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>3</td>
<td>8.3</td>
<td>7</td>
<td>8.2</td>
<td>82</td>
</tr>
</tbody>
</table>

*p<.05; **p<.01; ***p<.001
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Prior medical procedure- Plastic Stent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td><12 yrs N</td>
<td>0.0</td>
</tr>
<tr>
<td>%</td>
<td>3.00</td>
</tr>
<tr>
<td>12-<18 yrs N</td>
<td>30.0</td>
</tr>
<tr>
<td>%</td>
<td>18.0</td>
</tr>
<tr>
<td>18-<35 yrs N</td>
<td>18.0</td>
</tr>
<tr>
<td>%</td>
<td>20.9</td>
</tr>
<tr>
<td>>=35 yrs N</td>
<td>50.2</td>
</tr>
<tr>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Prior medical procedure- Plastic Stent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td><12 yrs N</td>
<td>33.0</td>
</tr>
<tr>
<td>%</td>
<td>97.1</td>
</tr>
<tr>
<td>12-<18 yrs N</td>
<td>52.0</td>
</tr>
<tr>
<td>%</td>
<td>83.9</td>
</tr>
<tr>
<td>18-<35 yrs N</td>
<td>130.0</td>
</tr>
<tr>
<td>%</td>
<td>60.2</td>
</tr>
<tr>
<td>>=35 yrs N</td>
<td>276.0</td>
</tr>
<tr>
<td>%</td>
<td>50.2</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th>Era</th>
<th>Prior medical procedure- Plastic Stent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-2002 N</td>
<td>3</td>
</tr>
<tr>
<td>%</td>
<td>100.0</td>
</tr>
<tr>
<td>2003-2006 N</td>
<td>8</td>
</tr>
<tr>
<td>%</td>
<td>80.0</td>
</tr>
<tr>
<td>2007-2010 N</td>
<td>47</td>
</tr>
<tr>
<td>%</td>
<td>23.0</td>
</tr>
<tr>
<td>2011-2014 N</td>
<td>69</td>
</tr>
<tr>
<td>%</td>
<td>71.1</td>
</tr>
<tr>
<td>2015-2018 N</td>
<td>10</td>
</tr>
<tr>
<td>%</td>
<td>71.4</td>
</tr>
</tbody>
</table>

* = p < .05; ** = p < .01; *** = p < .001
Recipient Diabetes Characteristics and Medical History

Prior medical procedure - Metal Stent

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>No</td>
<td>0.0</td>
<td>3</td>
<td>100.0</td>
<td>30</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>100.0</td>
<td>0.0</td>
<td>7</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Prior medical procedure - Metal Stent</td>
<td>Missing</td>
<td>33</td>
<td>97.1</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>1</td>
<td>2.9</td>
<td>3</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>9</td>
<td>100.0</td>
<td>61</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>5</td>
<td>7.6</td>
<td>8</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Missing</td>
<td>33</td>
<td>91.7</td>
<td>76</td>
<td>89.4</td>
<td>210</td>
</tr>
<tr>
<td>Available</td>
<td>3</td>
<td>8.3</td>
<td>9</td>
<td>10.6</td>
<td>66</td>
</tr>
</tbody>
</table>

* = p < .05; ** = p < .01; *** = p < .001
Exhibit 2-3 (continued)

Recipient Diabetes Characteristics and Medical History

Prior medical procedure - Nerve blockage

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>4</td>
<td>44.4</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>5</td>
<td>33</td>
<td>38.8</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Missing</td>
<td>31</td>
<td>91.2</td>
<td>53</td>
<td>85.5</td>
</tr>
<tr>
<td>Available</td>
<td>3</td>
<td>8.8</td>
<td>9</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>50.0</td>
<td>11</td>
<td>52.4</td>
<td>72</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>50.0</td>
<td>10</td>
<td>47.6</td>
<td>56</td>
</tr>
</tbody>
</table>

* = p < .05; ** = p < .01; *** = p < .001

Data completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
<td>83.3</td>
<td>64</td>
<td>75.3</td>
<td>148</td>
</tr>
<tr>
<td>Available</td>
<td>6</td>
<td>16.7</td>
<td>21</td>
<td>24.7</td>
<td>128</td>
</tr>
</tbody>
</table>

CITR 1st Annual Autograft Report

Datafile Closure: January 6, 2017

Chapter 2
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Prior medical procedure- Drainage</td>
<td>No</td>
<td>2</td>
<td>66.7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1</td>
<td>33.3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Prior medical procedure- Drainage</td>
<td>Missing</td>
<td>31</td>
<td>91.2</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>3</td>
<td>8.8</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Prior medical procedure- Drainage</td>
<td>No</td>
<td>3</td>
<td>60.0</td>
<td>11</td>
<td>78.6</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>2</td>
<td>40.0</td>
<td>3</td>
<td>21.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Prior medical procedure- Drainage</td>
<td>Missing</td>
<td>31</td>
<td>86.1</td>
<td>71</td>
<td>83.5</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>5</td>
<td>13.9</td>
<td>14</td>
<td>16.5</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Prior medical procedure- Enzyme replacement</td>
<td>No</td>
<td>0.0</td>
<td>3</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>3</td>
<td>100.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Prior medical procedure- Enzyme replacement</td>
<td>Missing</td>
<td>31</td>
<td>91.2</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>3</td>
<td>8.8</td>
<td>4</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Prior medical procedure- Enzyme replacement</td>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>7</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>5</td>
<td>41.7</td>
<td>18</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Prior medical procedure- Enzyme replacement</td>
<td>Missing</td>
<td>33</td>
<td>91.7</td>
<td>73</td>
<td>85.9</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>3</td>
<td>8.3</td>
<td>12</td>
<td>14.1</td>
</tr>
</tbody>
</table>

* = p < .05; ** = p < .01; *** = p < .001
Exhibit 2-3 (continued)

Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Prior medical procedure- Other</th>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td><12 yrs</td>
<td>3</td>
<td>50.0</td>
<td>3</td>
<td>21.4</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>12-<18 yrs</td>
<td>3</td>
<td>50.0</td>
<td>11</td>
<td>78.6</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior medical procedure- Other</td>
<td>Missing</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td>28</td>
<td>82.4</td>
<td>48</td>
<td>77.4</td>
<td>110</td>
</tr>
<tr>
<td>Available</td>
<td></td>
<td>6</td>
<td>17.6</td>
<td>14</td>
<td>22.6</td>
<td>106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior medical procedure- Other</td>
<td>No</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>3</td>
<td>75.0</td>
<td>11</td>
<td>84.6</td>
<td>56</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>25.0</td>
<td>2</td>
<td>15.4</td>
<td>167</td>
<td>74.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th>Era</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior medical procedure- Other</td>
<td>Missing</td>
<td>32</td>
<td>88.9</td>
<td>72</td>
<td>84.7</td>
<td>53</td>
<td>19.2</td>
<td>234</td>
<td>62.6</td>
<td>25</td>
</tr>
<tr>
<td>Available</td>
<td></td>
<td>4</td>
<td>11.1</td>
<td>13</td>
<td>15.3</td>
<td>223</td>
<td>80.8</td>
<td>140</td>
<td>37.4</td>
<td>23</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Prior surgical procedure- Frey</th>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3 100.0</td>
<td>5 100.0</td>
<td>65 98.5</td>
<td>208 99.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>1 1.5</td>
<td>1 0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>31 91.2</td>
<td>57 91.9</td>
<td>150 69.4</td>
<td>298 58.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available</td>
<td>3 8.8</td>
<td>5 8.1</td>
<td>66 30.6</td>
<td>209 41.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td></td>
</tr>
<tr>
<td>Prior surgical procedure- Frey</td>
<td>No</td>
<td>3 100.0</td>
<td>12 100.0</td>
<td>85 98.8</td>
<td>157 99.4</td>
<td>24 100.0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>1 1.2</td>
<td>1 0.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td></td>
</tr>
<tr>
<td>Prior surgical procedure- Frey</td>
<td>Missing</td>
<td>33 91.7</td>
<td>73 85.9</td>
<td>190 68.8</td>
<td>216 57.8</td>
<td>24 50.0</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>3 8.3</td>
<td>12 14.1</td>
<td>86 31.2</td>
<td>158 42.2</td>
<td>24 50.0</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

Prior surgical procedure - Puestow

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>75.0</td>
<td>5</td>
<td>62.5</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>25.0</td>
<td>3</td>
<td>37.5</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
<td>88.2</td>
<td>54</td>
<td>87.1</td>
</tr>
<tr>
<td>Available</td>
<td>4</td>
<td>11.8</td>
<td>8</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>Prior surgical procedure - Puestow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3 37.5</td>
<td>12 80.0</td>
<td>77 80.2</td>
<td>152</td>
<td>96.2</td>
</tr>
<tr>
<td>Yes</td>
<td>5 62.5</td>
<td>3 20.0</td>
<td>19 19.8</td>
<td>6 3.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
<td>N %</td>
</tr>
<tr>
<td>Prior surgical procedure - Puestow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>28 77.8</td>
<td>70 82.4</td>
<td>180 65.2</td>
<td>216</td>
<td>57.8</td>
</tr>
<tr>
<td>Available</td>
<td>8 22.2</td>
<td>15 17.6</td>
<td>96 34.8</td>
<td>158</td>
<td>42.2</td>
</tr>
</tbody>
</table>

*p<.05; **p<.01; ***p<.001

![Graph of Prior surgical procedure - Puestow](CITR_Data_06Jan2017)
Exhibit 2-3 (continued)

Recipient Diabetes Characteristics and Medical History

Prior Surgical Procedure - Traversal

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>5</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>2015-2018</td>
<td>207</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>5</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-2018</td>
<td>207</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prior Surgical Procedure - Traversal

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>100.0</td>
<td>12</td>
<td>100.0</td>
<td>83</td>
<td>100.0</td>
</tr>
<tr>
<td>2017-2018</td>
<td>24</td>
<td>100.0</td>
<td>24</td>
<td>100.0</td>
<td>24</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Prior Surgical Procedure - Traversal

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>33</td>
<td>91.7</td>
<td>73</td>
<td>85.9</td>
<td>193</td>
<td>69.9</td>
</tr>
<tr>
<td>2017-2018</td>
<td>216</td>
<td>57.8</td>
<td>24</td>
<td>50.0</td>
<td>24</td>
<td>50.0</td>
</tr>
</tbody>
</table>

*p=*p<.05; **=p<.01; ***=p<.001
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

Prior surgical procedure - partial pancreatectomy

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>100</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>4</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>60.0</td>
<td>11</td>
<td>68.8</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>40.0</td>
<td>5</td>
<td>31.3</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>60.0</td>
<td>11</td>
<td>68.8</td>
<td>77</td>
<td>88.5</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>40.0</td>
<td>5</td>
<td>31.3</td>
<td>10</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Data completeness:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>60.0</td>
<td>11</td>
<td>68.8</td>
<td>77</td>
<td>88.5</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>40.0</td>
<td>5</td>
<td>31.3</td>
<td>10</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Note: *=p<.05; **=p<.01; ***=p<.001**
Exhibit 2-3 (continued)
Recipient Diabetes Characteristics and Medical History

Prior surgical procedure- Other

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs N</th>
<th>12-<18 yrs N</th>
<th>18-<35 yrs N</th>
<th>>=35 yrs N</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>3 (100.0%)</td>
<td>5 (29.4%)</td>
<td>52 (40.6%)</td>
<td>162 (49.8%)</td>
<td>*</td>
</tr>
<tr>
<td>Yes</td>
<td>0 (0.0%)</td>
<td>12 (70.6%)</td>
<td>76 (59.4%)</td>
<td>163 (50.2%)</td>
<td></td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior surgical procedure- Other</td>
<td>No</td>
<td>4 (36.4%)</td>
<td>12 (20.7%)</td>
<td>65 (29.0%)</td>
<td>121 (77.6%)</td>
<td>20 (83.3%)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>7 (63.6%)</td>
<td>46 (79.3%)</td>
<td>159 (71.0%)</td>
<td>35 (22.4%)</td>
<td>4 (16.7%)</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior surgical procedure- Other</td>
<td>No</td>
<td>4 (36.4%)</td>
<td>12 (20.7%)</td>
<td>65 (29.0%)</td>
<td>121 (77.6%)</td>
<td>20 (83.3%)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>7 (63.6%)</td>
<td>46 (79.3%)</td>
<td>159 (71.0%)</td>
<td>35 (22.4%)</td>
<td>4 (16.7%)</td>
</tr>
</tbody>
</table>

* = p < .05; ** = p < .01; *** = p < .001

Graphs

- **Graph 1:** Prior surgical procedure- Other by age group.
- **Graph 2:** Prior surgical procedure- Other by era.

CITR 1st Annual Autograft Report
Datafile Closure: January 6, 2017
Chapter 2
Page 2-31
Exhibit 2-3 (continued)

Recipient Diabetes Characteristics and Medical History

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy performed</td>
<td>Yes</td>
<td>31</td>
<td>100.0</td>
<td>58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy performed</td>
<td>Missing</td>
<td>3</td>
<td>8.8</td>
<td>4</td>
</tr>
<tr>
<td>Available</td>
<td>31</td>
<td>91.2</td>
<td>58</td>
<td>93.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Pancreatectomy performed</td>
<td>Yes</td>
<td>36</td>
<td>100.0</td>
<td>82</td>
<td>100.0</td>
<td>260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Pancreatectomy performed</td>
<td>Missing</td>
<td>0.0</td>
<td>3</td>
<td>3.5</td>
<td>16</td>
<td>5.8</td>
</tr>
<tr>
<td>Available</td>
<td>36</td>
<td>100.0</td>
<td>82</td>
<td>96.5</td>
<td>260</td>
<td>94.2</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-4
Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy type</td>
<td>Total or Completion (>=95%)</td>
<td>30</td>
<td>96.8</td>
<td>58</td>
</tr>
<tr>
<td>Partial (<95%)</td>
<td></td>
<td>1</td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy type</td>
<td>Missing</td>
<td>3</td>
<td>8.8</td>
<td>4</td>
</tr>
<tr>
<td>Available</td>
<td>31</td>
<td>91.2</td>
<td>58</td>
<td>93.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy type</td>
<td>Total or Completion (>=95%)</td>
<td>23</td>
<td>63.9</td>
<td>67</td>
<td>81.7</td>
</tr>
<tr>
<td>Partial (<95%)</td>
<td></td>
<td>13</td>
<td>36.1</td>
<td>15</td>
<td>18.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy type</td>
<td>Missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available</td>
<td>36</td>
<td>100.0</td>
<td>82</td>
<td>96.5</td>
<td>259</td>
</tr>
</tbody>
</table>

*p<.05; **p<.01; ***p<.001
Exhibit 2-4 (continued)
Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating pancreatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.0</td>
<td>3</td>
<td>5.2</td>
<td>9</td>
</tr>
<tr>
<td>Yes</td>
<td>31</td>
<td>100.0</td>
<td>55</td>
<td>94.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating pancreatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>3</td>
<td>8.8</td>
<td>4</td>
<td>6.5</td>
<td>4</td>
</tr>
<tr>
<td>Available</td>
<td>31</td>
<td>91.2</td>
<td>58</td>
<td>93.5</td>
<td>212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating pancreatitis</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.0</td>
<td>0.0</td>
<td>23</td>
<td>9.2</td>
<td>53</td>
<td>14.6</td>
</tr>
<tr>
<td>Yes</td>
<td>34</td>
<td>100.0</td>
<td>76</td>
<td>100.0</td>
<td>227</td>
<td>90.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating pancreatitis</td>
<td>Missing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>5.6</td>
<td>9</td>
<td>10.6</td>
<td>26</td>
</tr>
<tr>
<td>Available</td>
<td>34</td>
<td>94.4</td>
<td>76</td>
<td>89.4</td>
<td>250</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-4 (continued)

Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating cancer</td>
<td>No</td>
<td>4</td>
<td>100.0</td>
<td>9</td>
<td>100.0</td>
<td>49</td>
<td>100.0</td>
<td>138</td>
<td>80.2</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>34</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating cancer</td>
<td>Missing</td>
<td>30</td>
<td>88.2</td>
<td>53</td>
<td>85.5</td>
<td>167</td>
<td>77.3</td>
<td>335</td>
<td>66.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>4</td>
<td>11.8</td>
<td>9</td>
<td>14.5</td>
<td>49</td>
<td>22.7</td>
<td>172</td>
<td>33.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating cancer</td>
<td>No</td>
<td>2</td>
<td>100.0</td>
<td>23</td>
<td>65.7</td>
<td>131</td>
<td>86.8</td>
<td>44</td>
<td>95.7</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>12</td>
<td>34.3</td>
<td>20</td>
<td>13.2</td>
<td>2</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating cancer</td>
<td>Missing</td>
<td>36</td>
<td>100.0</td>
<td>83</td>
<td>97.6</td>
<td>241</td>
<td>87.3</td>
<td>223</td>
<td>59.6</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>0.0</td>
<td>2</td>
<td>2.4</td>
<td>35</td>
<td>12.7</td>
<td>151</td>
<td>40.4</td>
<td>46</td>
<td>95.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<.05; **p<.01; ***p<.001
Exhibit 2-4 (continued)

Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12<-18 yrs</th>
<th>18<-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Pancreatectomy for treating pancreatic pseudocysts</td>
<td>No</td>
<td>4</td>
<td>100.0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12<-18 yrs</th>
<th>18<-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Pancreatectomy for treating pancreatic pseudocysts</td>
<td>Missing</td>
<td>30</td>
<td>88.2</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>4</td>
<td>11.8</td>
<td>9</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Pancreatectomy for treating pancreatic pseudocysts</td>
<td>No</td>
<td>2</td>
<td>100.0</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>2</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating pancreatic pseudocysts</td>
<td>Missing</td>
<td>36</td>
<td>100.0</td>
<td>83</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>0.0</td>
<td>2</td>
<td>2.4</td>
<td>35</td>
</tr>
</tbody>
</table>

* = p < .05; ** = p < .01; *** = p < .001
Exhibit 2-4 (continued)
Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating pancreatic cysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td>100.0</td>
<td>9</td>
<td>100.0</td>
<td>49</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating pancreatic cysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
<td>88.2</td>
<td>53</td>
<td>85.5</td>
<td>167</td>
</tr>
<tr>
<td>Available</td>
<td>4</td>
<td>11.8</td>
<td>9</td>
<td>14.5</td>
<td>49</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Pancreatectomy for treating pancreatic cysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>100.0</td>
<td>33</td>
<td>97.1</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating pancreatic cysts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>36</td>
<td>100.0</td>
<td>83</td>
<td>97.6</td>
<td>242</td>
</tr>
<tr>
<td>Available</td>
<td>0.0</td>
<td>2.4</td>
<td>34</td>
<td>12.3</td>
<td>151</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-4 (continued)
Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating tumors</td>
<td>No</td>
<td>4 100.0</td>
<td>9 100.0</td>
<td>48 98.0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>1 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating tumors</td>
<td>Missing</td>
<td>30 88.2</td>
<td>53 85.5</td>
<td>167 77.3</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>4 11.8</td>
<td>9 14.5</td>
<td>49 22.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating tumors</td>
<td>No</td>
<td>2 100.0</td>
<td>34 97.1</td>
<td>147 97.4</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>1 2.9</td>
<td>4 2.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating tumors</td>
<td>Missing</td>
<td>36 100.0</td>
<td>83 97.6</td>
<td>241 87.3</td>
<td>223 78.3</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>0.0</td>
<td>2 2.4</td>
<td>35 12.7</td>
<td>151 40.4</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001

Exhibit 2-4 (continued)

Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Pancreatectomy for treating chronic pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td><12 yrs</td>
<td>No: 1 25.0</td>
</tr>
<tr>
<td>12-<18 yrs</td>
<td>5 55.6</td>
</tr>
<tr>
<td>18-<35 yrs</td>
<td>12 24.5</td>
</tr>
<tr>
<td>>=35 yrs</td>
<td>62 35.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th>Pancreatectomy for treating chronic pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
<td>No: 30 88.2</td>
</tr>
<tr>
<td>Available</td>
<td>53 85.5</td>
</tr>
<tr>
<td></td>
<td>167 77.3</td>
</tr>
<tr>
<td></td>
<td>333 65.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Era</th>
<th>Pancreatectomy for treating chronic pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-2006</td>
<td>No: 2 100.0</td>
</tr>
<tr>
<td></td>
<td>15 41.7</td>
</tr>
<tr>
<td></td>
<td>33 21.7</td>
</tr>
<tr>
<td></td>
<td>30 65.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Era</th>
<th>Pancreatectomy for treating chronic pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-2002</td>
<td>No: 36 100.0</td>
</tr>
<tr>
<td></td>
<td>83 97.6</td>
</tr>
<tr>
<td></td>
<td>240 87.0</td>
</tr>
<tr>
<td></td>
<td>222 59.4</td>
</tr>
<tr>
<td></td>
<td>2 4.2</td>
</tr>
</tbody>
</table>

* = p < .05; ** = p < .01; *** = p < .001

Pancreatectomy for treating chronic pancreatitis

- **<12 yrs**: N=1, %25.0
- **12-<18 yrs**: N=5, %55.6
- **18-<35 yrs**: N=12, %24.5
- **>=35 yrs**: N=62, %35.6

Pancreatectomy for treating chronic pancreatitis

- **2003-2006**: N=2, %100.0
- **2007-2010**: N=53, %85.5
- **2011-2014**: N=167, %77.3
- **2015-2018**: N=333, %65.7

Pancreatectomy for treating chronic pancreatitis

- **1999-2002**: N=36, %100.0
- **2003-2006**: N=83, %97.6
- **2007-2010**: N=240, %87.0
- **2011-2014**: N=222, %59.4
- **2015-2018**: N=2, %4.2

CITR 1st Annual Autograft Report

Datafile Closure: January 6, 2017

Chapter 2
Exhibit 2-4 (continued)

Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating acute pancreatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>50.0</td>
<td>9</td>
<td>100.0</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>50.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating acute pancreatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
<td>88.2</td>
<td>53</td>
<td>85.5</td>
</tr>
<tr>
<td>Available</td>
<td>4</td>
<td>11.8</td>
<td>9</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating acute pancreatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>100.0</td>
<td>35</td>
<td>100.0</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>25</td>
<td>16.4</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Pancreatectomy for treating acute pancreatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>36</td>
<td>100.0</td>
<td>83</td>
<td>97.6</td>
<td>241</td>
</tr>
<tr>
<td>Available</td>
<td>0.0</td>
<td>2</td>
<td>2.4</td>
<td>35</td>
<td>12.7</td>
</tr>
</tbody>
</table>

* = p<.05; ** = p<.01; *** = p<.001

![Pancreatectomy for treating acute pancreatitis](attachment:image1.png)

CITR Data 06Jan2017

![Pancreatectomy for treating acute pancreatitis](attachment:image2.png)

CITR Data 06Jan2017
Exhibit 2-4 (continued)
Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating trauma</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td>100.0</td>
<td>9</td>
<td>100.0</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating trauma</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
<td>88.2</td>
<td>53</td>
<td>85.5</td>
</tr>
<tr>
<td>Available</td>
<td>4</td>
<td>11.8</td>
<td>9</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Era

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating trauma</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>100.0</td>
<td>35</td>
<td>100.0</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Data completeness

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating trauma</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Missing</td>
<td>36</td>
<td>100.0</td>
<td>83</td>
<td>97.6</td>
<td>241</td>
</tr>
<tr>
<td>Available</td>
<td>0.0</td>
<td>2</td>
<td>2.4</td>
<td>35</td>
<td>12.7</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-4 (continued)
Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Pancreatectomy for treating necrosis</th>
<th><12 yrs N</th>
<th>%</th>
<th>12-<18 yrs N</th>
<th>%</th>
<th>18-<35 yrs N</th>
<th>%</th>
<th>>=35 yrs N</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>4</td>
<td>100.0</td>
<td>9</td>
<td>100.0</td>
<td>49</td>
<td>100.0</td>
<td>171</td>
<td>98.8</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs N</th>
<th>%</th>
<th>12-<18 yrs N</th>
<th>%</th>
<th>18-<35 yrs N</th>
<th>%</th>
<th>>=35 yrs N</th>
<th>%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating necrosis</td>
<td>Missing</td>
<td>30</td>
<td>88.2</td>
<td>53</td>
<td>85.5</td>
<td>167</td>
<td>77.3</td>
<td>334</td>
<td>65.9</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>4</td>
<td>11.8</td>
<td>9</td>
<td>14.5</td>
<td>49</td>
<td>22.7</td>
<td>173</td>
<td>34.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Pancreatectomy for treating necrosis</td>
<td>No</td>
<td>2</td>
<td>100.0</td>
<td>35</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating necrosis</td>
<td>Missing</td>
<td>36</td>
<td>100.0</td>
<td>83</td>
<td>97.6</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Available</td>
<td>0.0</td>
<td>2</td>
<td>2.4</td>
<td>35</td>
<td>12.7</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-4 (continued)

Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating infection</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td>100.0</td>
<td>9</td>
<td>100.0</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating infection</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Missing</td>
<td>30</td>
<td>88.2</td>
<td>53</td>
<td>85.5</td>
<td>167</td>
</tr>
<tr>
<td>Available</td>
<td>4</td>
<td>11.8</td>
<td>9</td>
<td>14.5</td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating infection</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>100.0</td>
<td>34</td>
<td>97.1</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatectomy for treating infection</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Missing</td>
<td>36</td>
<td>100.0</td>
<td>83</td>
<td>97.6</td>
<td>241</td>
<td>87.3</td>
</tr>
<tr>
<td>Available</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
<td>2.4</td>
<td>35</td>
<td>12.7</td>
</tr>
</tbody>
</table>

* = p < .05; ** = p < .01; *** = p < .001

Pancreatectomy for treating infection

- **<12 yrs**
- **12-<18 yrs**
- **18-<35 yrs**
- **>=35 yrs**

- **2003-2006**
- **2007-2010**
- **2011-2014**
- **2015-2018**

CITR Data 06Jan2017
Exhibit 2-4 (continued)

Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatectomy for treating Other No</td>
<td>4</td>
<td>100.0</td>
<td>9</td>
<td>100.0</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0</td>
<td>0.0</td>
<td>2</td>
<td>4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
</tbody>
</table>

| Pancreatectomy for treating Other Missing | 30 | 88.2 | 53 | 85.5 | 166 | 76.9 | 323 | 63.7 |
| Available | 4 | 11.8 | 9 | 14.5 | 50 | 23.1 | 184 | 36.3 |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
</tbody>
</table>

| Pancreatectomy for treating Other No | 0.0 | 2 | 28.6 | 34 | 81.0 | 142 | 94.7 | 45 | 97.8 | *** |
| Yes | 2 | 100.0 | 5 | 71.4 | 8 | 19.0 | 8 | 5.3 | 1 | 2.2 |

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
</tbody>
</table>

| Pancreatectomy for treating Other Missing | 34 | 94.4 | 78 | 91.8 | 234 | 84.8 | 224 | 59.9 | 2 | 4.2 |
| Available | 2 | 5.6 | 7 | 8.2 | 42 | 15.2 | 150 | 40.1 | 46 | 95.8 |

*=p<.05; **=p<.01; ***=p<.001
Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Age Group</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Mean</td>
<td>SE</td>
<td>N</td>
</tr>
<tr>
<td>Pancreatitis duration (yrs)</td>
<td>28</td>
<td>4.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N Mean</td>
<td>SE</td>
<td>N Mean</td>
<td>SE</td>
<td>N Mean</td>
<td>SE</td>
</tr>
<tr>
<td>Pancreatitis duration (yrs)</td>
<td>25</td>
<td>7.0</td>
<td>1.0</td>
<td>68</td>
<td>7.2</td>
</tr>
</tbody>
</table>

*p<.05; **p<.01; ***p<.001
Exhibit 2-4 (continued)
Recipient Pancreatectomy Information

<table>
<thead>
<tr>
<th>Pancreatitis etiology</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol/Drug induced</td>
<td>0.0</td>
<td>0.0</td>
<td>8</td>
<td>4.1</td>
<td>35</td>
</tr>
<tr>
<td>Biliary</td>
<td>0.0</td>
<td>0.0</td>
<td>5</td>
<td>2.6</td>
<td>13</td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td>0.0</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4.1</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>5</td>
<td>10</td>
<td>63</td>
<td>32.5</td>
<td>126</td>
</tr>
<tr>
<td>Idiopathic (Pancreas divisum)</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>14.4</td>
<td>60</td>
</tr>
<tr>
<td>Sphincter of Oddi Dysfunction (SOD)</td>
<td>0.0</td>
<td>1</td>
<td>27</td>
<td>13.9</td>
<td>63</td>
</tr>
<tr>
<td>Trauma</td>
<td>0.0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>4.6</td>
</tr>
<tr>
<td>Familial</td>
<td>24</td>
<td>38</td>
<td>43</td>
<td>22.2</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data completeness</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
<td>4</td>
<td>11.8</td>
<td>22</td>
<td>10.2</td>
<td>156</td>
</tr>
<tr>
<td>Available</td>
<td>30</td>
<td>88.2</td>
<td>194</td>
<td>89.8</td>
<td>351</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol/Drug induced</td>
<td>7</td>
<td>22.6</td>
<td></td>
<td>10</td>
<td>14.5</td>
<td></td>
<td>11</td>
<td>5.0</td>
<td></td>
<td>14</td>
<td>5.1</td>
<td></td>
<td>1</td>
<td>3.1</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Biliary</td>
<td>3</td>
<td>9.7</td>
<td></td>
<td>2</td>
<td>2.9</td>
<td></td>
<td>7</td>
<td>3.2</td>
<td></td>
<td>5</td>
<td>1.8</td>
<td></td>
<td>1</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td>1</td>
<td>3.2</td>
<td></td>
<td>2</td>
<td>2.9</td>
<td></td>
<td>11</td>
<td>5.0</td>
<td></td>
<td>3</td>
<td>1.1</td>
<td></td>
<td>1</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td>12</td>
<td>38.7</td>
<td></td>
<td>35</td>
<td>50.7</td>
<td></td>
<td>86</td>
<td>39.1</td>
<td></td>
<td>64</td>
<td>23.2</td>
<td></td>
<td>7</td>
<td>21.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic (Pancreas divisum)</td>
<td>6</td>
<td>19.4</td>
<td></td>
<td>8</td>
<td>11.6</td>
<td></td>
<td>31</td>
<td>14.1</td>
<td></td>
<td>41</td>
<td>14.9</td>
<td></td>
<td>4</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphincter of Oddi Dysfunction (SOD)</td>
<td>0.0</td>
<td>7</td>
<td>10.1</td>
<td>42</td>
<td>19.1</td>
<td></td>
<td>39</td>
<td>14.1</td>
<td></td>
<td>3</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>4</td>
<td>1.4</td>
<td></td>
<td>0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>2</td>
<td>2.9</td>
<td>11</td>
<td>5.0</td>
<td></td>
<td>21</td>
<td>7.6</td>
<td></td>
<td>3</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familial</td>
<td>2</td>
<td>6.5</td>
<td></td>
<td>3</td>
<td>4.3</td>
<td></td>
<td>21</td>
<td>9.5</td>
<td></td>
<td>85</td>
<td>30.8</td>
<td></td>
<td>12</td>
<td>37.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing</td>
<td>5</td>
<td>13.9</td>
<td></td>
<td>16</td>
<td>18.8</td>
<td></td>
<td>56</td>
<td>20.3</td>
<td></td>
<td>98</td>
<td>26.2</td>
<td></td>
<td>16</td>
<td>33.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available</td>
<td>31</td>
<td>86.1</td>
<td></td>
<td>69</td>
<td>81.2</td>
<td></td>
<td>220</td>
<td>79.7</td>
<td></td>
<td>276</td>
<td>73.8</td>
<td></td>
<td>32</td>
<td>66.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-4 (continued)
Recipient Pancreatectomy Information

Pancreatitis etiology

<table>
<thead>
<tr>
<th></th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol/Drug induced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biliary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic (Pancreas divisum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphincter of Oddi Dysfunction (SOD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CITR Data 06Jan2017

Pancreatitis etiology

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol/Drug induced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biliary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopathic (Pancreas divisum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphincter of Oddi Dysfunction (SOD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CITR Data 06Jan2017
Pancreatitis etiology

Era

- 2015-2018
 - Alcohol/Drug induced: 100%
 - Idiopathic: 100%
 - Idiopathic (Pancreas divisum): 100%
 - Biliary: 100%
 - Sphincter of Oddi Dysfunction (SOD): 100%
 - Other: 100%
 - Familial: 100%
- 2011-2014
 - Alcohol/Drug induced: 100%
 - Idiopathic: 100%
 - Idiopathic (Pancreas divisum): 100%
 - Biliary: 100%
 - Sphincter of Oddi Dysfunction (SOD): 100%
 - Other: 100%
 - Familial: 100%
- 2007-2010
 - Alcohol/Drug induced: 100%
 - Idiopathic: 100%
 - Idiopathic (Pancreas divisum): 100%
 - Biliary: 100%
 - Sphincter of Oddi Dysfunction (SOD): 100%
 - Other: 100%
 - Familial: 100%
- 2003-2006
 - Alcohol/Drug induced: 100%
 - Idiopathic: 100%
 - Idiopathic (Pancreas divisum): 100%
 - Biliary: 100%
 - Sphincter of Oddi Dysfunction (SOD): 100%
 - Other: 100%
 - Familial: 100%
- 1999-2002
 - Alcohol/Drug induced: 100%
 - Idiopathic: 100%
 - Idiopathic (Pancreas divisum): 100%
 - Biliary: 100%
 - Sphincter of Oddi Dysfunction (SOD): 100%
 - Other: 100%
 - Familial: 100%

Age Group

- <12 yrs: 100%
- 12-<18 yrs: 100%
- 18-<35 yrs: 100%
- >=35 yrs: 100%

CITR Data 06Jan2017
Exhibit 2-5

Recipient Laboratory Values at First Infusion

<table>
<thead>
<tr>
<th>Age Group</th>
<th><12 yrs</th>
<th>12-18 yrs</th>
<th>18-35 yrs</th>
<th>>=35 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Mean</td>
<td>SE</td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>31</td>
<td>5.24</td>
<td>0.07</td>
<td>49</td>
</tr>
<tr>
<td>Basal C-Peptide (ng/mL)</td>
<td>29</td>
<td>1.36</td>
<td>0.21</td>
<td>47</td>
</tr>
<tr>
<td>Fasting blood glucose (mg/dL)</td>
<td>25</td>
<td>86.52</td>
<td>1.68</td>
<td>34</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>3</td>
<td>17.00</td>
<td>1.00</td>
<td>4</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>3</td>
<td>28.00</td>
<td>4.51</td>
<td>3</td>
</tr>
<tr>
<td>Alkaline phosphatase (U/L)</td>
<td>3</td>
<td>270.00</td>
<td>81.84</td>
<td>4</td>
</tr>
<tr>
<td>Total bilirubin (mg/dL)</td>
<td>3</td>
<td>0.40</td>
<td>0.12</td>
<td>4</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>3</td>
<td>0.53</td>
<td>0.07</td>
<td>4</td>
</tr>
<tr>
<td>eGFR-CKD (mL/min/1.73m²)</td>
<td>3</td>
<td>160.51</td>
<td>13.48</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Mean</td>
<td>SE</td>
<td>N</td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>1</td>
<td>5.00</td>
<td>-</td>
<td>26</td>
<td>5.25</td>
</tr>
<tr>
<td>Basal C-Peptide (ng/mL)</td>
<td>4</td>
<td>1.35</td>
<td>0.33</td>
<td>17</td>
<td>2.57</td>
</tr>
<tr>
<td>Fasting blood glucose (mg/dL)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>92.69</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>4</td>
<td>81.75</td>
<td>32.59</td>
<td>14</td>
<td>40.50</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>4</td>
<td>36.50</td>
<td>9.04</td>
<td>14</td>
<td>37.21</td>
</tr>
<tr>
<td>Alkaline phosphatase (U/L)</td>
<td>4</td>
<td>97.75</td>
<td>33.50</td>
<td>13</td>
<td>108.15</td>
</tr>
<tr>
<td>Total bilirubin (mg/dL)</td>
<td>4</td>
<td>0.56</td>
<td>0.17</td>
<td>13</td>
<td>0.62</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>2</td>
<td>193.00</td>
<td>50.00</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>2</td>
<td>44.50</td>
<td>9.50</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>3</td>
<td>75.67</td>
<td>31.69</td>
<td>1</td>
<td>297.00</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>4</td>
<td>0.76</td>
<td>0.05</td>
<td>13</td>
<td>0.82</td>
</tr>
<tr>
<td>eGFR-CKD (mL/min/1.73m²)</td>
<td>4</td>
<td>111.91</td>
<td>2.42</td>
<td>13</td>
<td>96.11</td>
</tr>
</tbody>
</table>

*=p<.05; **=p<.01; ***=p<.001
Exhibit 2-5 (continued)
Recipient Laboratory Values at First Infusion

HbA1c (%)

- **Age Group**
 - <12 yrs
 - 12-<18 yrs
 - 18-<35 yrs
 - >=35 yrs

- **Era**
 - 1999-2002
 - 2003-2006
 - 2007-2010
 - 2011-2014
 - 2015-2018

Basal C-peptide (ng/mL)

- **Age Group**
 - <12 yrs
 - 12-<18 yrs
 - 18-<35 yrs
 - >=35 yrs

- **Era**
 - 1999-2002
 - 2003-2006
 - 2007-2010
 - 2011-2014
 - 2015-2018

Fasting blood glucose (mg/dL)

- **Age Group**
 - <12 yrs
 - 12-<18 yrs
 - 18-<35 yrs
 - >=35 yrs

- **Era**
 - 1999-2002
 - 2003-2006
 - 2007-2010
 - 2011-2014
 - 2015-2018
Exhibit 2-5 (continued)
Recipient Laboratory Values at First Infusion

CITR Data 06Jan2017

Chapter 2
Page 2-51
Recipient Laboratory Values at First Infusion

- **Total bilirubin (mg/dL)**
 - Age Group: <12 yrs, 12-<18 yrs, 18-<35 yrs, >=35 yrs

- **Total cholesterol (mg/dL)**
 - Age Group: <12 yrs, 12-<18 yrs, 18-<35 yrs, >=35 yrs

- **HDL (mg/dL)**
 - Age Group: <12 yrs, 12-<18 yrs, 18-<35 yrs, >=35 yrs
Exhibit 2-5 (continued)
Recipient Laboratory Values at First Infusion

LDL (mg/dL)
- Age Group: <12 yrs, 12-<18 yrs, 18-<35 yrs, >=35 yrs

Triglycerides (mg/dL)
- Age Group: <12 yrs, 12-<18 yrs, 18-<35 yrs, >=35 yrs

Serum creatinine (mg/dL)
- Age Group: <12 yrs, 12-<18 yrs, 18-<35 yrs, >=35 yrs
Chapter 3
Islet Processing Characteristics
Table of Contents

- Introduction ... 3
- Exhibit 3-1 Islet Processing Summary ... 4
- Exhibit 3-2 Cold ischemia information ... 5
- Exhibit 3-3 Islet Product Characteristics (Cumulative through all infusions per recipient) 6
- Exhibit 3-4 Correlation of Islet Characteristics with Recipient, Recovery, and Processing Characteristics .. 7
Introduction

Many data elements in this Chapter are too sparsely reported to allow any meaningful tabulation of results. These are indicated as intentionally omitted.

Cold ischemia time is generally quite short, averaging 0.6±0.1 to 2.9±2.4 hours over the eras (Exhibit 3-2).

Although total islet particle count varies significantly by age, significantly increasing with age, total IEQs and IEQs/kg do not (Exhibit 3-3). The only other islet characteristic that varies by age is endotoxin, with a significant downward trend with increasing age (Exhibit 3.3). When available, islet viability is at least 90%

The only remarkable correlations between recipient/donor characteristics and islet product characteristics are (Exhibit 3-4):
- Negative correlation between recipient/donor age and total particle count
- Positive correlation between recipient/donor BMI and total IEQs
- Negative correlation between cold ischemia time and both total particle count and total IEQs
Exhibit 3-1
Islet Processing Summary

Data on procurement team and islet processing center relatedness to the transplant center, islet culturing, gradient type, preservation solution, islet purification, density gradient, and microbiology testing are too sparsely reported to allow any meaningful results tabulation. Exhibit 3-1 is intentionally omitted.
Exhibit 3-2

Cold ischemia information

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Time from admission to pancreatotomy (hrs)</td>
<td></td>
</tr>
<tr>
<td>Time from pancreatotomy to transplant (hrs)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
<td>8</td>
<td>1.0</td>
<td>0.7</td>
<td>13</td>
<td>4.9</td>
<td>7.8</td>
<td>35</td>
</tr>
<tr>
<td>Time from cross clamp to pancreas recovery (hrs)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Duration of cold ischemia (hrs)</td>
<td>4</td>
<td>0.6</td>
<td>0.1</td>
<td>9</td>
<td>1.4</td>
<td>0.5</td>
<td>35</td>
<td>2.3</td>
<td>2.1</td>
<td>113</td>
<td>1.8</td>
</tr>
<tr>
<td>Culture time (hrs)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
Exhibit 3-3
Islet Product Characteristics (Cumulative through all infusions per recipient)

<table>
<thead>
<tr>
<th></th>
<th>Infusions</th>
<th><12 yrs</th>
<th>12-<18 yrs</th>
<th>18-<35 yrs</th>
<th>>=35 yrs</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SE</td>
<td>N</td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td>Total cell volume</td>
<td>4</td>
<td>4.8</td>
<td>2.2</td>
<td>17</td>
<td>6.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Total islet particles (final preparation, 1000s)</td>
<td>8</td>
<td>268.3</td>
<td>49.9</td>
<td>23</td>
<td>274.2</td>
<td>34.3</td>
</tr>
<tr>
<td>Embedded islets (%)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>Islet equivalents (1000s)</td>
<td>9</td>
<td>196.2</td>
<td>40.0</td>
<td>21</td>
<td>201.9</td>
<td>32.7</td>
</tr>
<tr>
<td>Islet equivalents(1000s)/kg recipient</td>
<td>3</td>
<td>7.0</td>
<td>0.7</td>
<td>2</td>
<td>3.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Total Endotoxin units</td>
<td>3</td>
<td>135.3</td>
<td>48.6</td>
<td>2</td>
<td>185.7</td>
<td>174.3</td>
</tr>
<tr>
<td>Endotoxin units/kg recipient weight</td>
<td>3</td>
<td>3.7</td>
<td>1.7</td>
<td>2</td>
<td>3.6</td>
<td>3.2</td>
</tr>
<tr>
<td>Islet viability</td>
<td>3</td>
<td>90.0</td>
<td>2.9</td>
<td>4</td>
<td>95.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Purity</td>
<td>3</td>
<td>5.0</td>
<td>0.6</td>
<td>1</td>
<td>8.0</td>
<td>-</td>
</tr>
</tbody>
</table>
Exhibit 3-4
Correlation of Islet Characteristics with Recipient, Recovery, and Processing Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Packed cell volume</th>
<th>Total particle count</th>
<th>Trapped islets</th>
<th>Total IEQs infused</th>
<th>IEQs/kg donor</th>
<th>Total beta cells</th>
<th>Beta cells/kg donor</th>
<th>Insulin content</th>
<th>Total endotoxin</th>
<th>Endotoxin/kg donor</th>
<th>Stimulation index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean recipient age (yrs)</td>
<td>0.05430 0.3870 256</td>
<td>-0.13269 0.0031 494</td>
<td>-0.11533 0.2437 104</td>
<td>-0.04343 0.3428 479</td>
<td>-0.15288 0.2744 53</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.03617 0.6864 127</td>
<td>-0.08101 0.3811 119</td>
<td></td>
</tr>
<tr>
<td>Recipient Weight (kg)</td>
<td>-0.07443 0.5589 64</td>
<td>-0.06849 0.3304 204</td>
<td>-0.03611 0.7255 97</td>
<td>0.0020 0.3177 189</td>
<td>-0.13991 0.3177 53</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.17673 0.0545 119</td>
<td>-0.00806 0.9307 119</td>
<td></td>
</tr>
<tr>
<td>Recipient height</td>
<td>-0.14535 0.2518 64</td>
<td>-0.06347 0.3756 197</td>
<td>-0.08042 0.4312 98</td>
<td>-0.02241 0.7596 189</td>
<td>-0.21214 0.1477 48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.03423 0.7129 118</td>
<td>-0.06618 0.4861 113</td>
<td></td>
</tr>
<tr>
<td>Recipient Body Mass Index (kg/m2)</td>
<td>-0.10532 0.4232 60</td>
<td>0.10935 0.1342 189</td>
<td>-0.01489 0.8873 93</td>
<td>0.26385 0.0003 181</td>
<td>-0.11377 0.4413 48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.19246 0.0411 113</td>
<td>0.04363 0.6463 113</td>
<td></td>
</tr>
<tr>
<td>Hours from admission to pancreatectomy</td>
<td>0.02055 0.9258 23</td>
<td>-0.11576 0.4654 42</td>
<td>-0.40272 0.0783 20</td>
<td>-0.24392 0.1557 38</td>
<td>-0.66948 0.7796 21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.09516 0.6509 25</td>
<td>-0.15667 0.4862 22</td>
<td></td>
</tr>
<tr>
<td>Hours from pancreatectomy to transplant</td>
<td>-0.20781 0.2705 30</td>
<td>-0.10535 0.4761 48</td>
<td>-0.34642 0.0973 24</td>
<td>0.12173 0.4326 44</td>
<td>0.05347 0.7911 27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.34306 0.0588 31</td>
<td>-0.26637 0.1706 28</td>
<td></td>
</tr>
<tr>
<td>Cold ischemic time (hrs)</td>
<td>0.21030 0.2253 35</td>
<td>-0.24890 0.0015 160</td>
<td>-0.15046 0.1569 90</td>
<td>-0.30675 0.0002 145</td>
<td>-0.06474 0.7435 28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.10344 0.2822 110</td>
<td>0.19443 0.0491 103</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4
Autologous Islet Recipient Medications
This Chapter is intentionally left blank
Chapter 5
Graft Function
<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1A</td>
<td>First Achievement of Insulin Independence (Intentionally omitted)</td>
</tr>
<tr>
<td>5-2A</td>
<td>Prevalence of Insulin Independence Post Last Infusion by Age Group</td>
</tr>
<tr>
<td>5-2B</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of Insulin Independence Post Last Infusion among Recipients 35 and over</td>
</tr>
<tr>
<td>5-2C</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of Insulin Independence Post Last Infusion among Recipients 18 to 35</td>
</tr>
<tr>
<td>5-2D</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of Insulin Independence Post Last Infusion among Recipients 12 to 18</td>
</tr>
<tr>
<td>5-2E</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of Insulin Independence Post Last Infusion among Recipients 12 and under</td>
</tr>
<tr>
<td>5-3</td>
<td>Retention of C-peptide ≥0.3 ng/mL Post Last Infusion</td>
</tr>
<tr>
<td>5-4A</td>
<td>Prevalence of C-peptide ≥0.3 ng/mL Post Last Infusion by Age Group (p=NS)</td>
</tr>
<tr>
<td>5-4B</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL Post Last Infusion among Recipients 35 and over</td>
</tr>
<tr>
<td>5-4C</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL Post Last Infusion among Recipients 18 to 35</td>
</tr>
<tr>
<td>5-4D</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL Post Last Infusion among Recipients 12 to 18</td>
</tr>
<tr>
<td>5-4E</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL Post Last Infusion among Recipients 12 and under</td>
</tr>
<tr>
<td>5-5A</td>
<td>Prevalence of Fasting Blood Glucose 60-140 mg/mL Post Last Infusion by Age Group</td>
</tr>
<tr>
<td>5-5B</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of Fasting Blood Glucose 60-140 mg/mL Post Last Infusion among Recipients 35 and over</td>
</tr>
<tr>
<td>5-5C</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of Fasting Blood Glucose 60-140 mg/mL Post Last Infusion among Recipients 18 to 35</td>
</tr>
<tr>
<td>5-5D</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of Fasting Blood Glucose 60-140 mg/mL Post Last Infusion among Recipients 12 to 18</td>
</tr>
<tr>
<td>5-5E</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Fasting Blood Glucose 60-140 mg/mL Post Last Infusion among Recipients 12 and under</td>
</tr>
<tr>
<td>5-6A</td>
<td>Prevalence of HbA1c<7.0% Post Last Infusion by Age Group (p<0.0001)</td>
</tr>
<tr>
<td>5-6B</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of HbA1c<7.0% Post Last Infusion among Recipients 35 and over</td>
</tr>
<tr>
<td>5-6C</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of HbA1c<7.0% Post Last Infusion among Recipients 18 to 35</td>
</tr>
<tr>
<td>5-6D</td>
<td>Univariate Effects of Individual Variables (p<0.01) on Prevalence of HbA1c<7.0% Post Last Infusion among Recipients 12 to 18</td>
</tr>
</tbody>
</table>
Exhibit 5-6E Univariate Effects of Individual Variables (p<0.01) on HbA1c<7.0% Post Last Infusion among Recipients 12 and under ..18

Exhibit 5-7 Prevalence of Absence of Severe Hypoglycemic Events Post Last Infusion by Age Group (p<0.0001)..19

Exhibit 5-8 Intentionally omitted ..20

Exhibit 5-9 Insulin Dose (U/day) Post Last Infusion...21

Exhibit 5-10 Fasting C-peptide (ng/mL) Post Last Infusion...22

Exhibit 5-11 HbA1c (%) Post Last Infusion ..23

Exhibit 5-12 Fasting Blood Glucose (mg/dL) Post Last Infusion ..25
Introduction

Unlike with allo-islet transplantation, time to first insulin independence is not a measure of engraftment for auto-islet transplantation. Exhibit 5-1 is left blank intentionally.

Achievement and durability of the primary outcomes are best exhibited as prevalence rates post initial transplant (very few auto-ITX recipients received a second transplant), and these are influenced by various patient and management factors. First, there were no significant differences in durability of insulin independence following Auto-ITx across the age groups (Exhibit 5-2A). All other factors were investigated by age group.

Recipients ≥35 years old (Exhibit 5-2B)

Insulin independence rates (Exhibit 5-2B) decline steadily over the 5 years post auto-ITx transplant, with very few retaining insulin independence at 5 years.

There were very few recipients with data reported on baseline hypoglycemia status; these results are not displayed. Hypoglycemia is not commonly assessed at baseline in Auto-Itx, as recipients are most often non-diabetic and not treated with insulin prior to surgery.

Baseline HDL>50 U/L showed greatly improved rates of insulin independence (Exhibit 5-2B/A, p=0.0044), as did triglycerides<65 (Exhibit 5-2B/B, p=0.0022).

Absence of diagnostic ERCP improved insulin independence rates (Exhibit 5-2B/C, p=0.0035), as did absence of treatment ERCP (Exhibit 5-2B/D, p=0.0055).

Chronic pancreatitis as the indication for auto-ITx reduced insulin independence rates (Exhibit 5-2B/E, p=0.0035).

Recipients 18-35 years old

Greater than 750K particles at islet count is associated with 100% insulin independence retention (Exhibit 5-2C/A, p<0.0001), and ≥275K IEQs showed much higher rates of insulin independence retention (Exhibit 5-2C/B, p=0.0049), with about 70% retaining insulin independence throughout the 5 years of follow-up.

Absence of diagnostic ERCP also exhibited greater insulin independence levels (Exh 5-2C/D, p=0.0085) in this age group.

Recipients <18 years old

These groups had too small sample size to uncover any factors associated with improved levels of insulin independence following transplantation (Exhibits 5-2C and 5-2D).
Age was not a significant factor of C-peptide≥0.3 ng/mL prevalence over five years post auto-ITx (Exhibit 5-4A). For the ≥35-year-old patients, largely the same variables that influenced insulin independence rates also influenced rates of C-peptide≥0.3 mg/dL (Exhibit 5-4B). Lower HbA1c at baseline, higher particles at count, >300K IEQs infused, no prior treatment ERCP, no prior plastic stent, no prior other medical procedure, indication other than chronic pancreatitis, partial pancreatectomy all exhibited improved retention of C-peptide>-0.3 ng/mL over 5 years. The differences by era are not readily explained.

In the 18-35 year-old's, higher number of islet particles at count, and IEQs infused improved rates of C-peptide≥0.3 ng/mL (Exhibit 5-4C). Observed differences across eras are not clearly explainable. There were no detectable factors for C-peptide≥0.3 ng/mL in the younger age groups.

Almost all patients had fasting blood glucose (FBG) of 60-140 mg/dL at baseline, and the prevalence rates remained at very high levels (>95%) through five years post-transplant, across all the age groups except ≥35 years old, in which there was a steady decline of FBG 60-140 each year post transplant, down to about 50% at 5-years (Exhibit 5-5A, p=0.0006). In this age group, fasting C-peptide>=0.3 ng/mL, and partial pancreatectomy, showed remarkably higher rates of FBG 460-140 (Exhibit 5-5B/D, p<0.0001).

No specific factors were associated with FBG 60-140 in auto-ITx recipients in age groups 18-<35, 12-<18, and <12 (Exhibit 5-5C, 5-5D, 5-5E).

All auto-ITx patients had HbA1c<7.0% at baseline. These rates remained very high (>95%) for young children and those aged 18-35, but declined to about 60% at 5-years post-transplant in 12-18-year-olds and adults ≥35 (Exhibit 5-6A). There were no specific factors influencing HbA1c<7.0% in the other age groups.

Severe hypoglycemic events (requiring the assistance of another person; SHE) were virtually non-existent at baseline and remained so throughout 5-years follow-up post auto-islet in all age groups (Exhibit 5-7).

Insulin dose (Exh 5-9) did not vary by age, era, total IEQs infused, or pancreatitis etiology. Although there is much missing data in this outcome, it is considered missing at random, i.e., not based on whether there was or was not insulin independence.

Fasting C-peptide boxplots (Exhibit 5-10) did not vary over time by age group, though they varied substantially by era differences may be due to age differences across eras.

HbA1c boxplots (Exhibit 5-11) varied by era, age group, total IEQs (higher IEQs were better), and pancreatitis etiology.

Fasting blood sugar as a continuous variable varied substantially by age with worse outcomes in those aged ≥35, was improved with ≥325K total IEQs infused, and varied by pancreatitis etiology.
For most of the primary metabolic endpoints, data interpretation is limited by the ~50% levels of missing data, for much follow-up including insulin independence and insulin use. All indications are that the data are missing at random, i.e., not selectively for insulin use or independence. From available data, **Insulin Dose** (Exh 5-9) when reported did not vary by age, era, total IEQs infused, or pancreatitis etiology. **Fasting C-peptide** boxplots (Exhibit 5-10) decreased over time after TPIAT and differed by era and pancreatitis etiology. **HbA1c boxplots** (Exhibit 5-11) varied by era, age group, total IEQs (higher IEQs were better), and pancreatitis etiology. **Fasting plasma glucose** (FPG) as a continuous variable varied substantially by age, total IEQs infused (≥325K were better), and varied by pancreatitis etiology. HbA1c and FPG were worse in those ≥35 years of age, as was HbA1c in those 12 - <18 years of age. HbA1c and FPG patterns differed by etiology of disease, which appears in part driven by worse glycemic control in Auto-Itx for alcoholic pancreatitis. Alcoholic pancreatitis has previously been associated in the literature with lower islet mass isolated for transplant and lower rates of insulin independence.
Exhibit 5-1A
First Achievement of Insulin Independence
This exhibit is intentionally omitted

Exhibit 5-2A
Prevalence of Insulin Independence Post Last Infusion by Age Group (p=NS)
Exhibit 5-2B
Univariate Effects of Individual Variables (p<0.01) on Prevalence of Insulin Independence Post Last Infusion among Recipients 35 and over

A. Baseline HDL (p=0.0044)

B. Baseline triglycerides (p=0.0022)

C. Diagnostic ERCP (p=0.0035)

D. Treatment ERCP (p=0.0055)

E. Indication: Chronic pancreatitis (p=0.0035)
Exhibit 5-2C
Univariate Effects of Individual Variables (p<0.01) on Prevalence of Insulin Independence Post Last Infusion among Recipients 18 to 35

A. IEQs (1000s, particle count) (p<0.0001)

B. IEQs infused (1000s) (p=0.0049)

C. Pancreatectomy type (p=0.0001)

D. Diagnostic ERCP (p=0.0085)

Exhibit 5-2D
Univariate Effects of Individual Variables (p<0.01) on Prevalence of Insulin Independence Post Last Infusion among Recipients 12 to 18

None

Exhibit 5-2E
Univariate Effects of Individual Variables (p<0.01) on Prevalence of Insulin Independence Post Last Infusion among Recipients 12 and under

None
Exhibit 5-3
Retention of C-peptide ≥0.3 ng/mL Post Last Infusion

| Exhibit is intentionally omitted |
Exhibit 5-4A
Prevalence of C-peptide ≥0.3 ng/mL Post Last Infusion by Age Group (p=NS)

Exhibit 5-4B
Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL Post Last Infusion among Recipients 35 and over

A. Baseline HbA1c (p=0.0004)

B. IEQs (1000s, particle count) (p=0.0001)

C. IEQs infused (p=0.0047)

D. IEQs infused/kg weight (p=0.0083)
Exhibit 5-4B (continued)
Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL
Post Last Infusion among Recipients 35 and over

E. Treatment ERCP (p=0.0050)

F. Plastic Stent (p=0.01)

G. Other prior medical procedure (p=0.0080)

H. Indication: Chronic pancreatitis (p=0.0050)

Exhibit 5-4C
Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL
Post Last Infusion among Recipients 18 to 35

A. Islet particles (1000s) (p=0.0015)

B. IEQs (1000s, particle count) (p=0.0003)

C. Diagnostic ERCP (p=0.0033)
Exhibit 5-4C(continued)
Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL
Post Last Infusion among Recipients 18 to 35

Exhibit 5-4D
Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL
Post Last Infusion among Recipients 12 to 18
None

Exhibit 5-4E
Univariate Effects of Individual Variables (p<0.01) on Prevalence of C-peptide ≥0.3 ng/mL
Post Last Infusion among Recipients 12 and under
None
Exhibit 5-5A
Prevalence of Fasting Blood Glucose 60-140 mg/mL Post Last Infusion by Age Group
(p=0.0006)

Exhibit 5-5B
Univariate Effects of Individual Variables (p<0.01) on Prevalence of Fasting Blood Glucose 60-140 mg/mL Post Last Infusion among Recipients 35 and over

A. Baseline fasting C-peptide (p<0.0001)

B. Baseline CKD-GFR (p<0.0001)

D. Pancreatectomy type (p<0.0001)
Exhibit 5-5C
Univariate Effects of Individual Variables (p<0.01) on Prevalence of Fasting Blood Glucose 60-140 mg/mL Post Last Infusion among Recipients 18 to 35

| None |

Exhibit 5-5D
Univariate Effects of Individual Variables (p<0.01) on Prevalence of Fasting Blood Glucose 60-140 mg/mL Post Last Infusion among Recipients 12 to 18

| None |

Exhibit 5-5E
Univariate Effects of Individual Variables (p<0.01) on Fasting Blood Glucose 60-140 mg/mL Post Last Infusion among Recipients 12 and under

| None |
Exhibit 5-6A
Prevalence of HbA1c<7.0% Post Last Infusion by Age Group (p<0.0001)

Exhibit 5-6B
Univariate Effects of Individual Variables (p<0.01) on Prevalence of HbA1c<7.0% Post Last Infusion among Recipients 35 and over

C. Indication: Other (p=0.0059)
D. Pancreatitis etiology (p<0.0001)

Exhibit 5-6B (continued)

Univariate Effects of Individual Variables (p<0.01) on Prevalence of HbA1c<7.0% Post Last Infusion among Recipients 35 and over
Exhibit 5-6C
Univariate Effects of Individual Variables (p<0.01) on Prevalence of HbA1c<7.0% Post Last Infusion among Recipients 18 to 35

None

Exhibit 5-6D
Univariate Effects of Individual Variables (p<0.01) on Prevalence of HbA1c<7.0% Post Last Infusion among Recipients 12 to 18

None

Exhibit 5-6E
Univariate Effects of Individual Variables (p<0.01) on HbA1c<7.0% Post Last Infusion among Recipients 12 and under

None
Exhibit 5-7
Prevalence of Absence of Severe Hypoglycemic Events Post Last Infusion by Age Group
(p<0.0001)

Children 12 and under

Adolescents 12 to 18

Adults 18 to 35

Adults 35 and over
Exhibit 5-8
Intentionally omitted
Exhibit 5-9
Insulin Dose (U/day) Post Last Infusion

Overall*

*No factors significant at p<0.01
Exhibit 5-10
Fasting C-peptide (ng/mL) Post Last Infusion

Overall

Era (p<0.0001)

Pancreatitis etiology (p<0.0001)
Exhibit 5-11
HbA1c (%) Post Last Infusion

Overall

Age (p<0.0001)

Total IEQs (p=0.0043)
Exhibit 5-11 (continued)
HbA1c (%) Post Last Infusion

Pancreatitis etiology (p<0.0001)
Exhibit 5-12
Fasting Blood Glucose (mg/dL) Post Last Infusion

Overall

Age (p=0.001)

Pancreatitis etiology (p<0.0001)
Appendix A: Autologous Islet Transplant Center Contributors
(Centers and Staff are listed in alphabetical order)
(*=inactive sites; #=data not included in 1st Annual Autograft Report)

Baylor Regional Transplant Institute
Dallas, Texas, USA
PI: Peter Kim
PI: Nicholas Onaca
Michelle Acker
Anne Farrow
Bashoo Naziruddin
Mario Reyes
Morihito Takita

Columbia University
New York, New York, USA
PI: Mark Hardy
PI: Beth Schrope
Xiaojuan Chen
Donald Garmon
Ashley Geczik
Jeanine Genkinger
Shanlong Jiang
Vilma Rosario
Yvette Tanhehco

Emory Transplant Center
Atlanta, Georgia, USA
PI: Nicole Turgeon
Jose Cano
Sallie Carpentier
Erica Hudson
Lynn Layman

Geneva University Hospital/
GRAGIL Network
Geneva, Switzerland
PI: Thierry Berney
Adrien Beauveil
Coralie Camillo
Sandrine Demuylder-Mischler
Laurence Kessler
Emmanuel Morelon

Lille University Hospital
Lille Cedex, France
PI: Marie Christine Vantyghem
Mikael Chetboun
Rimed Ezzouaoui
Valery Gmyr
Julie Kerr-Conte
Violeta Raverdy

Medical University of South Carolina
Charleston, South Carolina, USA
PI: Hongjun Wang
Colleen Cloud
Wenyu Gou
Katherine Morgan
Betsy Shuford
Clare Tyson
Danielle Woodford

Ohio State University
Columbus, Ohio, USA
PI: Amer Rajab
Jill Buss
Ronald Ferguson
Mitchell Henry
Kwame Osei

Royal Adelaide Hospital
South Australia, Australia
PI: Toby Coates
PI: Graeme Russ
Christopher Drogemuller
Toni Radford

San Raffaele Institute
Milan, Italy
PI: Paola Maffi
PI: Antonio Secchi
Paola Magistretti
Rita Nano
Lorenzo Piemonti
Marina Scavini

University of Alabama*
Birmingham, Alabama, USA
PI: Devin Eckhoff
Juan Contreras
Deborah Saale
Cheryl Smyth
Juan Anthony Thompson
Patti Wilson

Contributors
Appendix A: Autologous Islet Transplant Center Contributors (continued)

(Centers and Staff are listed in alphabetical order)
(*=inactive sites; #=data not included in 1st Annual Autograft Report)

University of California, San Francisco
San Francisco, California, USA
PI: Andrew Posselt
PI: Peter Stock
Kenzo Hirose
Alexandria Johnson
Kristina Johnson
Gregory Szot

University of Chicago
Chicago, Illinois, USA
PI: Piotr Witkowski
Lindsay Basto
Yolanda Becker
Karolina Golab
Natalie Fillman
John Fung
Mark Kijek
Evelyn Konsur
J. Michael Mills
Yevhen Pavelko
Louis Philipson
Julia Solomina
J. Richard Thistlethwaite, Jr.
Ling-jia Wang

University of Minnesota
Minneapolis, Minnesota, USA
PI: Bernhard Hering
PI: Melena Bellin
Greg Beliman
Louise Berry
Barbara Bland
Brian Flanagan
Carrie Gibson
Tom Gilmore
Angelika Gruessner
Amber Lockridge
Jayne Pederson
David Radosevich
Scott Rajala

University of Nebraska
Omaha, NE, USA
PI: Luciano Vargas, Jr.
Carol Carney
Sarah Ferguson
Coeta Hampton
Alan Langmas
David Mercer
Wendy Ward
Phyllis Warkentin
James Wisecarver

University of Nebraska
Philadelphia, Pennsylvania, USA
PI: Ali Naji
PI: Michael Rickels
Chengyang Liu
Eileen Markmann

University of Pennsylvania
Philadelphia, Pennsylvania, USA
PI: Ali Naji
PI: Michael Rickels
Chengyang Liu
Eileen Markmann

University of Pittsburgh
Pittsburgh, Pennsylvania, USA
PI: Martin Wijkstrom
Deb Bower
Antoinette Carroll
Beth Elinoff
Sheila Fedorek
Michael Knoll
Chanelle Labash
Cassandra Long
Chelsea Phillips
Jennifer Steel
Joyce Szczepanski
David Whitcomb

Virginia Commonwealth University
Richmond, Virginia, USA
PI: Marlon Levy
Mary Baldecchi
Martha Behnke
Nathan Bringle
Maricar Davis
Stephanie Erskine
Todd Gehr
Donna George
Genevieve Hobbs
Alanda Jones
Mazhar Kanak
Peggy Schaeffer
Amit Sharma
Yoshiko Tamura
Caitlin Winkler
Appendix A: Autologous Islet Transplant Center Contributors (continued)
(Centers and Staff are listed in alphabetical order)
(*=inactive sites; #=data not included in 1st Annual Autograft Report)

CITR Coordinating Center

PI: Franca Benedicty Barton
Co-PI: Donald Stablein

Cassandra Ballou
Holly Brindley
Lily Chen
Eileen Guan

Sara Jolles
Jessica Riddell
Elizabeth Whitlock
Jesal Vyas

CITR Committees
(Members are listed in alphabetical order)

AUTO Working Group
Chair: Melena Bellin
Franca Benedicty Barton
Kenneth Brayman
Luis Fernandez
Marlon Levy
Bashoo Naziruddin
Hongjun Wang

Publications/Presentations Committee
Rodolfo Alejandro
Franca Benedicty Barton
Melena Bellin
Bernhard Hering
Fouad Kandeel
Michael Rickels

Compliance Committee
Chair: Fouad Kandeel
Violetta Raverdi

Data Elements Committee
Chair: [Vacant]
Parastoo Dinyari
Fouad Kandeel
Francois Pattou

Transplant Coordinators/Data Managers Committee
Chair: [Vacant]
Ojoma Agbo
Patrice Al-Saden
Ana Alvarez
Patricia Anderson
David Baidal
Mary Baldecchi
Lindsay Basto
Louise Berry
Barbara Bland
Nathaniel Brigle
Jill Buss
Coralie Camillo
Lauren Card
Carol Carney
Sallie Carpentier
Kerry Crisalli
Nathalia Del Socorro Padilla Tellez

Sandrine Demuylder-Mischler
Parastoo Dinyari
Christopher Drogemuller
Anne Farrow
Sheila Fedorek
Natalie Fillman
Leelamma George
Wenyu Gou
Tracy Gowan
Wilma Heemstra
Genevieve Hobbs
Kathy Howe
Erica Hudson
Kristina Johnson
Abdullah Karabala
Veerle Kemels
Matthew Kime
Michael Knoll
Lauren Lockhart
Victor Luu
Paola Magistretti
Lina Mariana
Eileen Markmann
Sachiko Paz
Jayne Pederson
Toni Radford
Violeta Raverdy
Viirma Rosario
Marina Scavini
Kristi Schneider
Betsy Shuford
Jeanette Stratton
Joyce Szczepanski
Margaret Thomas
Jennifer Truong
Ursule Van de Velde
Evelien van Rossenberg